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Nasal

▶ Austronesian > Malayo-Polynesian >
Sumatran language

▶ Spoken by ∼3,000 people in coastal
southwestern Bengkulu province, Indonesia

▶ LEI: Endangered (Lee & van Way 2018)
▶ Not known to linguists until 2007

(Anderbeck & Aprilani 2013)
▶ Sustained intensive contact with

neighboring Lampungic and Malayic
languages
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Nasal documentation

Documentation project began in 2017:
▶ Little existing prior documentation

1 3 written sources with limited lexical information
2 No audio/video recordings with transcriptions

▶ Large corpus of conversation, elicitation, and narratives
(McDonnell 2017, McDonnell et al. ongoing)

1 ≈360hrs recording time
2 ≈50hrs transcribed (mostly conversation)

3 / 20



Introduction ASR Discussion References

Transcription workflow

Four primary steps in our transcription workflow:
1 Segmentation
2 Transcription
3 Discourse & Translation
4 Context

Time to transcribe audio is often upwards of forty times its length
(Seifart et al. 2018)

The most time consuming step in transcription is #2.
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ASR motivations

Sufficient input:
▶ Relatively large corpus of transcriptions (for training)
▶ Large corpus of untranscribed recordings (for testing)
▶ Availability of well-developed pre-trained models

Valuable output:
▶ Slow progression of manual transcription
▶ Reliance on transcripts for linguistic analysis
▶ Ongoing development of Nasal dictionary
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Overview

Project goals:
1 Assess feasibility of implementing ASR in a typical documentary

context
2 Determine if adequate results can be obtained
3 Knowing the limitations, determine if ASR could help speed up the

transcription workflow
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ASR

7 / 20



Introduction ASR Discussion References

Data for training ASR model

Data used for model development:
▶ Transcriptions of 25 recordings
▶ Genres:

▶ Everyday conversation (13)
▶ Prosody elicitation (10)
▶ Semantic domain elicitation (2)

▶ 49 unique speakers
▶ 7 represented twice, 1 represented three times

Diversity in speakers and genres reflects intended use case of the ASR
model
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Data preparation

Data preparation:
▶ 25hrs recording time
▶ Timecodes in ELAN’s XML used for clipping speech segments
▶ Final data

1 17.5hrs actual speech
2 160,000 words
3 66,500 annotations

80/20 split of training data and testing data
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ASR model

Built by fine-tuning Whisper’s small ASR model (Whisper (version
20240930) [Computer software] 2024)

Utilized pre-trained tokenizer and feature extractor from Indonesian
(related language)

Run over 5,000 steps, evaluation of WER at every 500-step checkpoint

Best checkpoint used in generating test transcriptions
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ASR results

Final checkpoint: 43.9% WER
▶ Significant improvement over previous model’s 67.2% WER

(San et al. 2023)

Tested against two segments not included for model development:
▶ Everyday conversation: 60.1% WER, 21.4% CER
▶ Dictionary: 54.1% WER, 20.4% CER
▶ WER and CER correspond exactly as expected with distribution of

word length in Nasal
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Transcription task

Comparison of manual vs. ASR-assisted transcription:
▶ Four 2.5min segments

▶ Everyday conversation, dictionary recording
▶ Empty annotations, ASR-generated annotations

▶ Block design transcription
▶ Screen-recorded for later analysis

Intended as impressionistic evaluation of ASR’s effectiveness.
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Transcription task

Results:
▶ All four transcription times faster correcting the ASR transcripts

▶ Time improvement: 11.30%, 21.92%, 23.49%, 32.29%
▶ As expected, correcting ASR-generated annotations was faster when

done second
▶ Most often changes were single-letter or single-word edits

Feedback:
▶ Revising the automated transcription was preferred over transcribing

from scratch
▶ Audio needed to be listened to fewer times in order for speech to be

accurately determined
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Discussion
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Discussion

First thoughts on the model:
▶ Clearly, 43.9% WER does not seem strong
▶ Typical documentary data is indeed sufficient for developing an ASR

model with usable WER/CER
▶ Time, cost, and software are not prohibitive for using ASR

So what is holding it back? What are the next steps?
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Limitations

Data:
1 Spelling variation: gawuh vs. gauh
2 Shortenings: jenu vs. nu
3 Discourse marking: m, uu, oo
4 Signal bleeding and audio clarity

Model:
1 Model size: Started with Whisper small
2 Availability of computational resources
3 Limited training time
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Future prospects

▶ Further study on viability of utilizing ASR to assist in transcription
▶ Additional development of ASR model: increasing size, normalizing

transcripts, adding training data
▶ Determining the point of diminished gains in training

Addition: Possibly attempt adding artificial data

Using Whisper’s medium model, (partially) standardized spelling, and
seven additional hours of recording: 37% WER, 14.4% CER.
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Summary

In response to our goals:
1 For time, cost, and data, ASR is feasible for the documentary

context
2 Is 37% WER, 14.4% CER adequate? Yes!
3 ASR-generated transcript assisted in transcription

We would love to hear suggestions, feedback, or interest in collaboration
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