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Forced Alignment

Forced Alignment associates transcripts with audio and video (at utterance, word, 
or segment level).

It’s incredibly useful for both linguistic research and community documentation 
projects.

Forced alignment requires an acoustic model and information about the grapheme 
to phoneme mappings (e.g. a dictionary of words and their phonemes). Acoustic 
model training is data hungry, and performance on languages across the world is 
very unequal.
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Various methods exist for increasing performance

Use high resource model (e.g. English)

Adapt high resource model 

Multilingual models

Here, we ask whether we can usefully combine language data from different 
languages from the same families (with very similar phoneme inventories) to get 
model improvement.
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Australian Indigenous languages

c. 440 languages

Similar phoneme inventories
across the country

Chronically underrepresented
in multilingual datasets (e.g. 
Common Voice)
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Can we take advantage of multilingual 
datasets to train better forced aligners?
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Models and methodology
Models:

- English adapted (base model trained on over 3000 hours of global data)
- Yidiny
- Big5 (Bardi, Gija, Ngaanyatjarra, Yan-nhangu, Yidiny)
- Base model (McAuliffe and Sonderegger, 2024)

- From scratch
- Yidiny
- Big5 (Bardi, Gija, Ngaanyatjarra, Yan-nhangu, Yidiny)

Testing Datasets:

- Yidiny, seen data
- Yidiny, unseen data
- Kunbarlang 7
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Evaluating an MFA model

- Method 1: Looking at how closely manual alignments match with MFA 
alignments

- Can look at overall “accuracy”
- Break it down by manner of articulation and place of articulation

- Will English adapted models perform worse on e.g. nasals?
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Evaluating an MFA model

- Method 1: Looking at how closely manual alignments match with MFA 
alignments

- Can look at overall “accuracy”
- Break it down by manner of articulation and place of articulation

- Will English adapted models perform worse on e.g. nasals?

- Method 2: Looking at how closely manual analyses match with MFA 
alignments

- We look at vowel formant plots
- Human analyses vary! There is no one “gold standard”
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Pipeline 
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Pipeline 
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Datasets

Models we 
are comparing



Results: Accuracy

Things to note:
- They ideally should all have 

approx. mean 0 - which we see!
- The more spread (sd) a plot 

has, the more variation the 
forced aligner produces
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Results: Accuracy - Yidiny seen testing setting
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Results: Precision - Yidiny seen testing setting
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Results: Precision - Yidiny seen testing setting
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Results: Precision - Yidiny seen testing setting
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Precision Yidiny-seen Summary

In the seen language seen data 
setting:
- Multilingual models show 

(slightly) higher precision than 
monolingual models

- Models trained from scratch are 
slightly less precise and less 
accurate than English-based 
models
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Results: Accuracy - Yidiny unseen testing setting
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Results: Accuracy - Yidiny unseen testing setting
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Results: Accuracy - Yidiny unseen testing setting
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Results: Accuracy - Yidiny unseen testing setting
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Precision Yidiny-unseen Summary

In the seen language unseen data 
setting:
- Multilingual models show 

(slightly) lower precision than 
monolingual models

- Models trained from scratch are 
quite less precise and less 
accurate than English-based 
models
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Results: Accuracy - Kunbarlang (unseen) testing setting
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Results: Accuracy - Kunbarlang (unseen) testing setting
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Results: Accuracy - Kunbarlang (unseen) testing setting
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Results: Accuracy - Kunbarlang (unseen) testing setting
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Precision Kunbarlang Summary

In the unseen language seen data 
setting:
- Multilingual models show more 

precision than monolingual 
models

- Models trained from scratch are 
much less precise and less 
accurate than English-based 
models
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Precision and Accuracy Summary

Across all settings:
- Precision and accuracy seem highly correlated
- Multilingual training data:

- improved performance in the Yidiny-seen and Kunbarlang-unseen 
settings

- slightly decreased performance in the Yidiny-unseen setting
- Models trained from scratch consistently perform worse than English-based 

models
- The performance gap was Kunbarlang >> Yidiny-unseen >> Yidiny-seen 
- In the Kunbarlang setting, multilingual training data had the biggest 

(positive) impact
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Comparison of Analyses: Yidiny seen

All analyses are similar, except the scratch-Yidiny model.
Long vowels show more variation for models trained from scratch.

Size of ellipses is large because of difficulty in formant extraction (noisy data) 38



Comparison of Analyses: Yidiny unseen

All analyses are similar, except the scratch-Yidiny model.

Long vowels show more variation for models trained from scratch.
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Comparison of Analyses: Kunbarlang (unseen)

Models from scratch:

- Struggle with /e o/
- /e/ absent in all training 

data, /o/ only present, but 
rare in one language of 
Big5
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Comparison of Analyses Summary

In the Yidiny-seen and Yidiny-unseen settings:
- All models, except the model trained from scratch on only Yidiny data, gave 

approximately the same analyses 
- Multilingual models provided better analyses

In the Kunbarlang setting:
- English-based models gave analyses nearly identical to the manually 

annotated analysis
- Models trained from scratch struggle with phones not in the training data (the 

mid-vowels)
In all settings:
- English-based models > scratch-Big5 >> scratch-Yidiny  
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Main takeaways

- Which models work best?
- English based models work best. Even the off-the-shelf English model was better than all the 

models trained from scratch in almost all ways
- Models trained from scratch were almost as good as the English models in the Yidiny-seen 

setting
- Does multilingual training data improve MFA?

- Yes!
- Slight improvements for English models

- Biggest improvements by natural class came from natural classes not in the 
training data (e.g. trills for English)

- Larger improvements for models trained from scratch
- How do analyses compare?

- English based models ≈ manual annotation
- The multilingual model trained from scratch also ≈ manual annotation for tokens it has trained 

extensively on
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Low-Resource Forced Alignment and Future work

Low-Resource Forced Alignment:

- The Yidiny-seen setting is thus most similar to real settings
- Smallest difference between the English-based and from-scratch models

- All models worked quite well in the Yidiny-seen setting
- Recommendation: use an adapted English based model if you have less 

than 30 minutes of training data

Future work:

- Optimizing forced alignment for settings like “Yidiny-seen”
- Hyperparameter tuning
- Data augmentation
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Appendix A: PoA Accuracy Yidiny seen
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Appendix A: PoA Accuracy Yidiny unseen
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Appendix A: PoA Accuracy Kunbarlang (unseen)
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