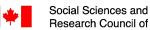
ComputEL-8 – March 4–5, 2025

User-friendly technology distribution and the language technology development pipeline

Lorena Martín Rodríguez¹ & Christopher Cox^{1,2} ¹Carleton University, ²Tsuut'ina Gunaha Institute

lmaro@stanford.edu • christopher.cox@carleton.ca


Acknowledgments

- At Tsuut'ina Nation: Bruce Starlight, Janelle Crane-Starlight, Hanna Big Crow; Tsuut'ina Nation Elders, language teachers, and language learners
- In academia: Antti Arppe (University of Alberta), Han Sloetjes (MPI Nijmegen)
- Supporting institutions: Tsuut'ina Gunaha Institute and Carleton University; Social Sciences and Humanities Research Council of Canada (SSHRC, Partnership Grant Partnership Grant 895-2019-1012); Digital Research Alliance of Canada; Centre for Advanced Computing;

Alliance de recherche

numérique du Canada

Social Sciences and Humanities Research Council of Canada

> **Digital Research** Alliance of Canada

Conseil de recherches en sciences humaines du Canada

Roadmap

- 1. Introduction
- 2. ELAN recognizers
- 3. Challenges
- 4. Creating installers
- 5. Limitations and future work

Introduction

85% of the languages spoken in Canada are endangered Loss of Indigenous knowledge, linguistic and cultural diversity

Efforts for language documentation, revitalization, and maintenance **Our contribution:** Making speech technology resources more readily accessible to language workers and communities

Aligning priorities

Colonial and harmful practices in speech and language technology

- Data-centered approaches
- Gold standards and prescriptivism
- Access to knowledge: Universality

(Bird, 2020)

Aligning priorities

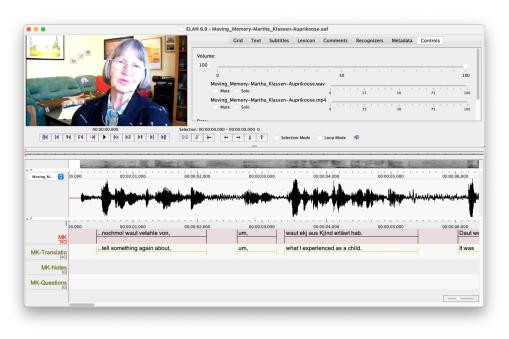
Colonial practices in language documentation projects

- Lack of access from the community
- Minimal community agency
- Conflicting ideas about access
- One-sided participation of community

(Henke & Berez-Kroeker, 2016)

"Self-determination is simply the idea that Native communities can effectively interpret their past and have a right to make decisions about the trajectory of their present and future."

(Shepard, 2016, p. 460)


In collaboration with the **Tsuut'ina Gunaha Institute** (*Tsuut'ina Nation*, *Treaty 7*):

- Active language revitalization, education, and documentation programs for **Tsuut'ina** (ISO 639-3: srs, Glottocode: sars1236) \rightarrow 100+ hours of new language recordings each year
- *One goal:* Incorporate materials into a community language archive/database, so that language resources are kept safe and information is more accessible *(Martín Rodríguez, 2024)*
- **Issue:** Possible to draw on current speech technologies to help segment and transcribe language recordings for a database like this—but how to make those tools accessible to everyone involved?

Introduction: ELAN

https://archive.mpi.nl/tla/elan

Time-aligned annotation of audio and video recordings

- Current *de facto* standard for annotating audiovisual materials in language documentation widespread adoption
- Open-ended annotation structure *(multiple tiers, annotation hierarchies, etc.)*
- Open-source, Java-based desktop application (Windows, macOS, Linux)

Closing the NLP-LDR tool gap

Our original contribution: Demonstrating the feasibility of distributing and installing current speech technologies in accessible ways—including integrating them into existing documentary software tools such as ELAN.

- Voice activity detection (VAD)
- Automatic speech recognition (ASR):
 - For Tsuut'ina (via XLS-R)
 - For English (*via both open- and closed-source services/models*)

Voice Activity Detection

Automatic audio segmentation into speech utterances. Integration of two DNN-based VAD models into ELAN:

- Voxseg-ELAN: Voxseg voice activity detection <u>https://github.com/coxchristopher/voxseg-elan</u> (Wilkinson and Niesler, 2021)
- 2. **SileroVAD-ELAN**: Silero-VAD, pre-trained on multilingual corpora <u>https://github.com/l12maro/SileroVAD-Elan</u>

(Silero Team, 2021)

Voice Activity Detection

ecognizer: 🕼 Voxseg voice activity detection	
Parameters	
Settings	
Speech vs. non-speech threshold (smaller value = more non-speech) (0.01 - 0.99; 0.95)	
C	0.95
Adjustment to start of segments (ms) (-1000 - 1000; -25)	
0	-25
Adjustment to end of segments (ms) (-1000 - 1000; 25)	
O	25
Perform additional silence detection?	
Enable 😒	
Silence threshold at segment edges (higher value = quieter segments treated as non-silence) (0 - 100; (65)
0	65
Silence threshold inside segments (higher value = quieter sections treated as non-silence) $(0 - 100; 80)$	
0	80
r Input	
[audio]: Input audio file (WAV)	
srs-TLL-20220315-MixPre3ii-01.way	
Output	
[xml tier]: Output recognized segments	

User-friendly technology

"Technology that is easy to understand and use, requiring little or no training to be operated by the user."

(Isaias et al., 2019)

Existing work:

There exist approaches incorporate ASR to **user-friendly pipelines** *(Foley et al., 2018; Adams et al., 2018)*

Incorporating other speech technologies into ELAN

(Cox, 2019, Partanen et al. 2020)

What about installation?

Challenges

Distribution using GitHub \rightarrow Not user-friendly

Under macOS 12.6, the following commands can be used to fetch and install the necessary Python packages:

```
git clone https://github.com/coxchristopher/voxseg-elan
cd voxseg-elan

python3 -m virtualenv venv-voxseg
source venv-voxseg/bin/activate

git clone https://github.com/NickWilkinson37/voxseg.git
pip install ./voxseg
pip install pydub tensorflow
```

Once all of these tools and packages have been installed, Voxseg-ELAN can be made available to ELAN as follows:

- 1. Edit the file voxseg-elan.sh to specify (a) the directory in which ffmpeg is located, and (b) a Unicode-friendly language and locale (if en_US.UTF-8 isn't available on your computer).
- 2. To make Voxseg-ELAN available to ELAN, move your Voxseg-ELAN directory into ELAN's extensions directory. This directory is found in different places under different operating systems:
 - Under macOS, right-click on ELAN_6.4 in your /Applications folder and select "Show Package Contents", then copy your voxseg-ELAN folder into ELAN_6.4.app/Contents/app/extensions.

navigation

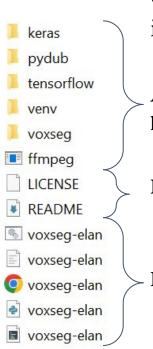
- Under Linux, copy your voxseg-ELAN folder into ELAN_6-4/app/extensions .
- Under Windows, copy your voxseg-ELAN folder into C:\Users\AppData\Local\ELAN_6-4\app\extensions .

Challenges

Distribution using GitHub \rightarrow Not user-friendly

Technical requirements (e.g. Python and Python packages) need to be installed by the user

Our aim: Using installers as user-friendly distribution methods for ELAN recognizers


• Voice activity detection (VAD)

Creating Installers

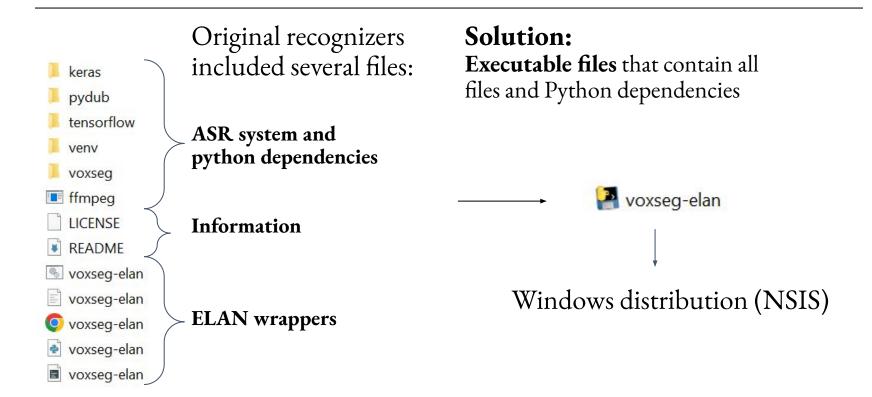
Two main steps:

- Wrapping recognizers as executable files (.exe)
- Distributing executables using installers

Creating executable files

Original recognizers included several files:

ASR system and python dependencies


Information

ELAN wrappers

Problem:

- Installation of all Python dependencies falls on user
- Requires some technical background for the installation of packages

Creating executable files

Features:

1. Multiple components

2. Detect ELAN location

📸 Installer Setup: Installation Options — 🗆 🗙	🚏 Installer Setup: Installation Folder – 🗆 🗙
Check the components you want to install and uncheck the components you don't want to install. Click Next to continue.	Setup will install Installer in the following folder. To install in a different folder, dick Browse and select another folder. Click Install to start the installation.
Select the type of install: Or, select the optional components you wish to install: Voxseg-elan	Destination Folder Users\Lorena\AppData\Local\ELAN_6.8\app\extensions Browse
Space required: 308.5 MB	Space required: 308.5 MB Space available: 35.0 GB
Cancel Nullsoft Install System v3.10 Next >	Cancel Nullsoft Install System v3.10 < Back Install

Current progress and future directions

Windows installers that make Silero VAD available in ELAN (6.4–6.8) are available for download on a Shared Drive

https://github.com/l12maro/SileroVAD-Elan

Expand user-friendly installation to

- Target **other OS** (*macOS*, *Linux*)
- Include **other speech technologies** (e.g., automatic speech recognition, speaker and language diarization, etc.)

References

Steven Bird. 2020. Decolonising Speech and Language Technology. In *Proceedings of the 28th International Conference on Computational Linguistics*, pages 3504–3519, Barcelona, Spain (Online). International Committee on Computational Linguistics.

Christopher Cox. 2019. *Persephone-ELAN: Automatic phoneme recognition for ELAN users*. Version 0.1.2. <u>https://github.com/coxchristopher/persephone-elan</u>.

Ben Foley, Joshua T. Arnold, Rolando Coto-Solano, Gautier Durantin, T. Mark Ellison, Daan van Esch, Scott Heath, František Kratochvil, Zara Maxwell-Smith, David Nash, Ola Olsson, Mark Richards, Nay San, Hywel M. Stoakes, N. Thieberger, and Janet Wiles. 2018. Building speech recognition systems for language documentation: The CoEDL Endangered Language Pipeline and Inference System (ELPIS). In *Proceedings of the 6th International Workshop on Spoken Language Technologies for Under-resourced Languages (SLTU 2018)*, pages 205–209. Gurugram, India: ISCA. https://www.isca-archive.org/sltu_2018/foley18_sltu.pdf.

Pedro Isaias, Paula Miranda, and Sara Pífano. 2019. Higher education and Web 2.0: Barriers and best practices from the standpoint of practitioners. In Jean-Éric Pelet (ed.). *Advanced Web Applications and Progressing E-Learning 2.0 Technologies in Higher Education*. IGI Global. <u>https://doi.org/10.4018/978-1-5225-7435-4</u>.

Luke Gessler. 2022. Closing the NLP Gap: Documentary Linguistics and NLP Need a Shared Software Infrastructure. In *Proceedings of the Fifth Workshop on the Use of Computational Methods in the Study of Endangered Languages*, pages 119–126. Dublin, Ireland: ACL. <u>https://doi.org/10.18653/v1/2022.computel-1.15.</u>

Ryan Henke and Andrea L. Berez-Kroeker. 2016. A Brief History of Archiving in Language Documentation, with an Annotated Bibliography. *Language Documentation & Conservation 10*. 411-457.

References

Lorena Del Rocío Martín Rodríguez. 2024. Collaborative Interface Design and Language Archiving: The Case of Tsuut'ina. Unpublished MA thesis. Ottawa, Canada: Carleton University. <u>https://doi.org/10.22215/etd/2024-16145</u>.

Brigitte Pakendorf, Nina Dobrushina, and Olesya Khanina. 2021. A typology of small-scale multilingualism. *International Journal of Bilingualism*, 25(4):835–859.

Niko Partanen, Mika Hämäläinen, and Tiina Klooster. 2020. Speech recognition for endangered and extinct Samoyedic languages. In *Proceedings of the 34th Pacific Asia Conference on Language, Information and Computation*, pages 523–533, Hanoi, Vietnam: ACL.

Michael A. Shepard. 2016. The value-added language archive: Increasing cultural compatibility for Native American communities. *Language Documentation & Conservation, 10*, 458–479. <u>http://hdl.handle.net/10125</u>

Silero Team. 2021. Silero VAD: pre-trained enterprise-grade Voice Activity Detector (VAD), number detector and language classifier. <u>https://github.com/snakers4/silero-vad</u>.

Sebastian Tschöpel, Daniel Schneider, Rolf Bardeli, Oliver Schreer, Stefano Masneri, Peter Wittenburg, Han Sloetjes, Przemek Lenkiewicz, and Eric Auer. 2011. AVATecH: Audio/Video Technology for Humanities Research. In *Proceedings of the Workshop on Language Technologies for Digital Humanities and Cultural Heritage*, pages 86–89, Hissar, Bulgaria: ACL.

Nicholas Wilkinson and Thomas Niesler. 2021. A hybrid CNN-BiLSTM voice activity detector. In ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 6803–6807.